TED Talks Live were held at The Town Hall Theater in NYC, in November of 2015. I had the pleasure of attending all six nights to hear speakers present impactful Ideas Worth Spreading. This post is an analysis of a talk by Sal Khan about how mastery and mindset can improve learning.
It’s a classic problem/solution story. One that describes a process that is being used on a global scale – in this case the process of learning – but often delivers less than ideal results. In such situations the stakes are high and new ways of thinking are required in order to address rapid changes in society.
Watch Sal’s TED Talk. He demonstrates that the status quo is not serving most students as it should, and offers an alternative that is based on his experience running the Khan Academy. In his view, it’s imperative that we change the way we learn. And if we do, the benefits to society are significant.
Transcript
(my notes in red)
I’m here today to talk about the two ideas that, at least based on my observations at Khan Academy, are kind of the core, or the key leverage points for learning. And it’s the idea of mastery and the idea of mindset.
When a speaker is well known, as is the case with Sal Khan who founded Khan Academy, a phrase such as ‘my observations at Khan Academy’ speaks volumes. He doesn’t need to explain his role or the history of the academy, but if you don’t have such notoriety, adding another sentence of explanation will keep the audience from being confused about who you are and the work you’re doing. In fact, at no point in his talk does Sal speak about his credentials. Few of us would be so fortunate.
I saw this in the early days working with my cousins. A lot of them were having trouble with math at first, because they had all of these gaps accumulated in their learning. And because of that, at some point they got to an algebra class and they might have been a little bit shaky on some of the pre-algebra, and because of that, they thought they didn’t have the math gene. Or they’d get to a calculus class, and they’d be a little bit shaky on the algebra. I saw it in the early days when I was uploading some of those videos on YouTube, and I realized that people who were not my cousins were watching.
Having introduced ‘the idea of mastery and the idea of mindset’, Sal provides an example that is also personal – ‘my cousins’ and by mentioning that it happened ‘in the early days’, he takes us back in time to the beginning of his journey. When you’re taking an audience on a journey of discovery, of developing a new view of the world, people want to know where it all started. What’s your origin story?
And at first, those comments were just simple thank yous. I thought that was a pretty big deal. I don’t know how much time you all spend on YouTube. Most of the comments are not “Thank you.” They’re a little edgier than that.
But then the comments got a little more intense, student after student saying that they had grown up not liking math. It was getting difficult as they got into more advanced math topics. By the time they got to algebra, they had so many gaps in their knowledge they couldn’t engage with it. They thought they didn’t have the math gene. But when they were a bit older, they took a little agency and decided to engage. They found resources like Khan Academy and they were able to fill in those gaps and master those concepts, and that reinforced their mindset that it wasn’t fixed; that they actually were capable of learning mathematics.
He then shifts the narrative from his cousins to the general public who have been watching his math videos on YouTube. In doing so Sal offers evidence that people who struggled with math could master the concepts that had been troublesome. In your idea-driven story, can you offer examples of how your idea is having an impact? That signifies that your idea has been, to some extent, validated.
And in a lot of ways, this is how you would master a lot of things in life. It’s the way you would learn a martial art. In a martial art, you would practice the white belt skills as long as necessary, and only when you’ve mastered it you would move on to become a yellow belt. It’s the way you learn a musical instrument: you practice the basic piece over and over again, and only when you’ve mastered it, you go on to the more advanced one.
Sal uses the examples of martial arts and music to support the idea of mastery that he began with. In this way we understand that the principle at hand is not confined to his one subject, but instead is common in many aspects of life. Most social problems have parallels elsewhere in society.
But what we point out — this is not the way a traditional academic model is structured, the type of academic model that most of us grew up in. In a traditional academic model, we group students together, usually by age, and around middle school, by age and perceived ability, and we shepherd them all together at the same pace. And what typically happens, let’s say we’re in a middle school pre-algebra class, and the current unit is on exponents, the teacher will give a lecture on exponents, then we’ll go home, do some homework. The next morning, we’ll review the homework, then another lecture, homework, lecture, homework. That will continue for about two or three weeks, and then we get a test. On that test, maybe I get a 75 percent, maybe you get a 90 percent, maybe you get a 95 percent. And even though the test identified gaps in our knowledge, I didn’t know 25 percent of the material. Even the A student, what was the five percent they didn’t know?
Even though we’ve identified the gaps, the whole class will then move on to the next subject, probably a more advanced subject that’s going to build on those gaps. It might be logarithms or negative exponents. And that process continues, and you immediately start to realize how strange this is. I didn’t know 25 percent of the more foundational thing, and now I’m being pushed to the more advanced thing. And this will continue for months, years, all the way until at some point, I might be in an algebra class or trigonometry class and I hit a wall. And it’s not because algebra is fundamentally difficult or because the student isn’t bright. It’s because I’m seeing an equation and they’re dealing with exponents and that 30 percent that I didn’t know is showing up. And then I start to disengage.
In this story block, Sal describes how a traditional education system works and identifies a fundamental flaw in the learning process – the fact that students are expected to learn new concepts using a foundation that contains knowledge gaps. This description not only resonates with the highly educated audience at the event, but will also be familiar with students around the world. In doing so, he builds a connection to the local, as well as the remote, audience.
To appreciate how absurd that is, imagine if we did other things in our life that way. Say, home-building. So we bring in the contractor and say, “We were told we have two weeks to build a foundation. Do what you can.” So they do what they can. Maybe it rains. Maybe some of the supplies don’t show up. And two weeks later, the inspector comes, looks around, says, “OK, the concrete is still wet right over there, that part’s not quite up to code … I’ll give it an 80 percent.” You say, “Great! That’s a C. Let’s build the first floor.”
Same thing. We have two weeks, do what you can, inspector shows up, it’s a 75 percent. Great, that’s a D-plus. Second floor, third floor, and all of a sudden, while you’re building the third floor, the whole structure collapses. And if your reaction is the reaction you typically have in education, or that a lot of folks have, you might say, maybe we had a bad contractor, or maybe we needed better inspection or more frequent inspection. But what was really broken was the process. We were artificially constraining how long we had to something, pretty much ensuring a variable outcome, and we took the trouble of inspecting and identifying those gaps, but then we built right on top of it.
As he did previously, Sal uses an analogy – this time building a house – to illustrate the result of creating a flawed foundation. Analogies can be an impactful part of your narrative, as they provide your audience with another way of seeing the problem that you’re addressing. When Sal says ‘Let’s build the first floor.’ what goes through your mind is, ‘This is not going to end well.’ Which is the point he’s making about the education system. You would never consider building a house with a flawed foundation.
So the idea of mastery learning is to do the exact opposite. Instead of artificially constraining, fixing when and how long you work on something, pretty much ensuring that variable outcome, the A, B, C, D, F — do it the other way around. What’s variable is when and how long a student actually has to work on something, and what’s fixed is that they actually master the material.
Every story that is concerned with a problem, must naturally shift to the solution, which in this story is ‘… to do the exact opposite.’ The change is from focusing on the time constraint to focusing on ‘mastery learning’. Where this pivot occurs is different in every story. In this talk, it’s about the half way point, which is pretty common. What’s important is that the pivot is clear the audience.
And it’s important to realize that not only will this make the student learn their exponents better, but it’ll reinforce the right mindset muscles. It makes them realize that if you got 20 percent wrong on something, it doesn’t mean that you have a C branded in your DNA somehow. It means that you should just keep working on it. You should have grit; you should have perseverance; you should take agency over your learning.
As he continues with the benefits of his approach to learning, Sal touches upon the second idea that he mentioned at the beginning of his talk – mindset. Rather than feeling that a low score is the final word, he encourages students to take control of their situation, to have grit, perseverance and agency. Solutions to problems that require individual action should include the inspiration to take those actions.
Now, a lot of skeptics might say, well, hey, this is all great, philosophically, this whole idea of mastery-based learning and its connection to mindset, students taking agency over their learning. It makes a lot of sense, but it seems impractical. To actually do it, every student would be on their own track. It would have to be personalized, you’d have to have private tutors and worksheets for every student. And these aren’t new ideas — there were experiments in Winnetka, Illinois, 100 years ago, where they did mastery-based learning and saw great results, but they said it wouldn’t scale because it was logistically difficult. The teacher had to give different worksheets to every student, give on-demand assessments.
If there are audience members who doubt the veracity of your idea, including an opposite viewpoint story block allows the speaker to address concerns that might be present. In this case he includes the example of a previous experiment, the challenges they encountered, then follows on with his view that such issues are no longer a problem today. The general approach is ‘you may see the situation this way, but I have a different view that I want to share with you’.
But now today, it’s no longer impractical. We have the tools to do it. Students see an explanation at their own time and pace? There’s on-demand video for that. They need practice? They need feedback? There’s adaptive exercises readily available for students.
In a longer talk there would be time to provide examples of how ‘on-demand video’ and ‘adaptive exercises’ would work for students. I was left with a concept, but not much in the way of understanding. Hearing one story about an individual would have made the idea much more impactful.
And when that happens, all sorts of neat things happen. One, the students can actually master the concepts, but they’re also building their growth mindset, they’re building grit, perseverance, they’re taking agency over their learning. And all sorts of beautiful things can start to happen in the actual classroom. Instead of it being focused on the lecture, students can interact with each other. They can get deeper mastery over the material. They can go into simulations, Socratic dialogue.
Sal reiterates some of the key point previously mentioned in his talk – mastering the concepts, building a growth mindset, building grit and perseverance and taking agency. This is a way to remind the audience of those factors which are important to your solution. Once again, however, I wanted to hear a story. An example of how a more dynamic classroom would operate. Take me inside the room. Let me feel the experience.
To appreciate what we’re talking about and the tragedy of lost potential here, I’d like to give a little bit of a thought experiment. If we were to go 400 years into the past to Western Europe, which even then, was one of the more literate parts of the planet, you would see that about 15 percent of the population knew how to read. And I suspect that if you asked someone who did know how to read, say a member of the clergy, “What percentage of the population do you think is even capable of reading?” They might say, “Well, with a great education system, maybe 20 or 30 percent.”
But if you fast forward to today, we know that that prediction would have been wildly pessimistic, that pretty close to 100 percent of the population is capable of reading. But if I were to ask you a similar question: “What percentage of the population do you think is capable of truly mastering calculus, or understanding organic chemistry, or being able to contribute to cancer research?” A lot of you might say, “Well, with a great education system, maybe 20, 30 percent.”
But what if that estimate is just based on your own experience in a non-mastery framework, your own experience with yourself or observing your peers, where you’re being pushed at this set pace through classes, accumulating all these gaps? Even when you got the A, that 95 percent, what was that five percent you missed? And it keeps accumulating — you get to an advanced class, all of a sudden you hit a wall and say, “I’m not meant to be a cancer researcher; I’m not meant to be a physicist; I’m not meant to be a mathematician.”
And I suspect that that actually is the case, but if you were allowed to be operating in a mastery framework, if you were allowed to really take agency over your learning, and when you get something wrong, embrace it — view that failure as a moment of learning — that number, the percent that could really master calculus or understand organic chemistry, is actually a lot closer to 100 percent.
The use of a ‘what if’ type of hypothetical question allows the audience to envision what could be better if the process was improved. In a problem/solution, idea-driven storyline, that’s a way of asking, ‘What if my solution were implemented? What would the result be?’ There are no guarantees that a proposed solution will work, but if you explain it clearly and give examples, the audience can imagine what the future might look like.
And this isn’t even just a “nice to have.” I think it’s a social imperative. We’re exiting what you could call the industrial age and we’re going into this, whatever, information revolution. And it’s clear that some things are happening. In the industrial age, society was a pyramid. And at the base of the pyramid, you needed human labor. In the middle of the pyramid, you had an information processing, a bureaucracy class, and at the top of the pyramid, you had your owners of capital and your entrepreneurs and your creative class. But we know what’s happening already, as we go into this information revolution. The bottom of that pyramid, automation, is going to take over. Even that middle tier, information processing, that’s what computers are good at.
Sal brings up an important point, that society is changing rapidly due to a revolution in information processing, which in his mind, means that it’s imperative to adopt a new way of learning. This is common for social issues that are not static. Which is to say, your solution is not just about solving a current problem, but is also needed going forward to prevent even greater harm. Think about how the future will look without your ideas being implemented. Is there a similar imperative within your story that the audience needs to understand?
So as a society, we have a question: All this new productivity is happening because of this technology, but who participates in it? Is it just going to be that very top of the pyramid, in which case, what does everyone else do? How do they operate? Or do we do something that’s more aspirational? Do we actually attempt to invert the pyramid, where you have a large creative class, where almost everyone can participate as an entrepreneur, an artist, as a researcher?
And I don’t think that this is utopian. I really think that this is all based on the idea that if we let people tap into their potential by mastering concepts, by being able to exercise agency over their learning, that they can get there. And when you think of it as just a citizen of the world, it’s pretty exciting. I mean, think about the type of equity we can we have, and the rate at which civilization could even progress. And so, I’m pretty optimistic about it. I think it’s going to be a pretty exciting time to be alive.
Thank you.
The visual of ‘inverting the pyramid’ is powerful, it’s a classic, ‘turn the problem on its head’ sort of narrative, but I’m not sure it works here. It may make sense to you, but it had me scratching my head. I was thinking that Sal’s approach to learning, whereby students learn at their own pace, master each level before moving on, and take control of their future, feels more like ‘leveling the playing field’.
But that’s a relatively small complaint, as the crux of his talk is about how our education system is fundamentally flawed, but doesn’t need to be. That we can change how the system operates, and in doing so, give students the opportunity to thrive instead of struggle.
[Note: all comments inserted into this transcript are my opinions, not those of the speaker, the TED organization, nor anyone else on the planet. In my view, each story is unique, as is every interpretation of that story. The sole purpose of these analytical posts is to inspire a storyteller to become a storylistener, and in doing so, make their stories more impactful.]
◆
If you enjoyed this article…
◆
◆
Subscribe to our newsletter for the latest updates!
Copyright Storytelling with Impact® – All rights reserved
Latif Nasser: You have no idea where camels really come from @ TED Talks Live
/in History, Nature, Science, TED, TED Talk/by Mark LovettTED Talks Live were held at The Town Hall Theater in NYC, in November of 2015. I had the pleasure of attending all six nights to hear speakers present impactful Ideas Worth Spreading. This post is an analysis of a talk by Latif Nasser about a journey of scientific discovery that can help us to see the world anew.
Watch Latif’s TED Talk. You can feel his enthusiasm throughout the story. His vocal variation, facial expressions and body movements convey emphasis at every turn. This is an unusual presentation, structured as an interview, but there’s much you can learn about how to create and tell an impactful story.
Transcript
(my notes in red)
So, this is a story about how we know what we know. It’s a story about this woman, Natalia Rybczynski. She’s a paleobiologist, which means she specializes in digging up really old dead stuff.
I always tell storytellers not to open their narrative with the phrase ‘this is a story about’, as it’s usually better to let that information come out in the talk. But in the vein of ‘rules are meant to be broken’, the practice can be successful when there’s mystery attached to the statement. Latif’s opening line is simply stated, yet contains that sense of mystery and therefore it quickly grabs our attention.
(Audio) Natalia Rybczynski: Yeah, I had someone call me “Dr. Dead Things.”
Using audio clips within a story is unusual, but it can add impact when it allows someone else to speak – we hear the story in their own words – or adds information best delivered by that person. But the main reason Latif has chosen to use audio within his talk is that he works in radio, so it makes perfect sense to simulate his natural environment.
And I think she’s particularly interesting because of where she digs that stuff up, way above the Arctic Circle in the remote Canadian tundra. Now, one summer day in 2006, she was at a dig site called the Fyles Leaf Bed, which is less than 10 degrees latitude away from the magnetic north pole.
Latif not only tells us who the main character is in his story (Natalia) but takes us to a specific year (2006), a time of year (summer), a general area (Arctic Circle / remote Canadian tundra), and a specific place (dig site). In just 40 seconds.
(Audio) NR: Really, it’s not going to sound very exciting, because it was a day of walking with your backpack and your GPS and notebook and just picking up anything that might be a fossil.
And at some point, she noticed something.
(Audio) NR: Rusty, kind of rust-colored, about the size of the palm of my hand. It was just lying on the surface.
And at first she thought it was just a splinter of wood, because that’s the sort of thing people had found at the Fyles Leaf Bed before — prehistoric plant parts. But that night, back at camp …
(Audio) NR: … I get out the hand lens, I’m looking a little bit more closely and realizing it doesn’t quite look like this has tree rings. Maybe it’s a preservation thing, but it looks really like … bone.
Huh. So over the next four years, she went to that spot over and over, and eventually collected 30 fragments of that exact same bone, most of them really tiny.
(Audio) NR: It’s not a whole lot. It fits in a small Ziploc bag.
And she tried to piece them together like a jigsaw puzzle. But it was challenging.
The mystery continues, as it’s not clear what Natalia has found. Too often storytellers unravel a mystery too quickly, but in this story, the audience is moved along step by step.
(Audio) NR: It’s broken up into so many little tiny pieces, I’m trying to use sand and putty, and it’s not looking good. So finally, we had a 3D surface scanner.
Ooh! NR: Yeah, right?
It turns out it was way easier to do it virtually.
(Audio) NR: It’s kind of magical when it all fits together.
How certain were you that you had it right, that you had put it together in the right way? Was there a potential that you’d put it together a different way and have, like, a parakeet or something?
(Audio) NR: (Laughs) Um, no. No, we got this.
What she had, she discovered, was a tibia, a leg bone, and specifically, one that belonged to a cloven-hoofed mammal, so something like a cow or a sheep. But it couldn’t have been either of those. It was just too big.
(Audio) NR: The size of this thing, it was huge. It’s a really big animal.
So what animal could it be? Having hit a wall, she showed one of the fragments to some colleagues of hers in Colorado, and they had an idea.
(Audio) NR: We took a saw, and we nicked just the edge of it, and there was this really interesting smell that comes from it.
By this point the addition of Natalia’s narrative almost has her on stage, as though the interview is happening in front of the audience.
It smelled kind of like singed flesh. It was a smell that Natalia recognized from cutting up skulls in her gross anatomy lab: collagen. Collagen is what gives structure to our bones. And usually, after so many years, it breaks down. But in this case, the Arctic had acted like a natural freezer and preserved it.
Then a year or two later, Natalia was at a conference in Bristol, and she saw that a colleague of hers named Mike Buckley was demoing this new process that he called “collagen fingerprinting.” It turns out that different species have slightly different structures of collagen, so if you get a collagen profile of an unknown bone, you can compare it to those of known species, and, who knows, maybe you get a match.
Departing from Natalia’s journey, Latif includes a science story block that describes a revolutionary process which provides a turning point in the story.
So she shipped him one of the fragments, FedEx.
(Audio) NR: Yeah, you want to track it. It’s kind of important.
And he processed it, and compared it to 37 known and modern-day mammal species. And he found a match. It turns out that the 3.5 million-year-old bone that Natalia had dug out of the High Arctic belonged to … a camel.
(Audio) NR: And I’m thinking, what? That’s amazing — if it’s true.
So they tested a bunch of the fragments, and they got the same result for each one. However, based on the size of the bone that they found, it meant that this camel was 30 percent larger than modern-day camels. So this camel would have been about nine feet tall, weighed around a ton.
Yeah. Natalia had found a Giant Arctic camel.
The mystery is solved, and Latif delivers the line emphatically, which results in laughter. Had the sentence been delivered in a monotone fashion it would have been received as another bit of data. Revelations within a story are often presented in this dramatic fashion. So much has been revealed in his story, but we’re less than half way through. We wonder what’s next.
Now, when you hear the word “camel,” what may come to mind is one of these, the Bactrian camel of East and Central Asia. But chances are the postcard image you have in your brain is one of these, the dromedary, quintessential desert creature — hangs out in sandy, hot places like the Middle East and the Sahara, has a big old hump on its back for storing water for those long desert treks, has big, broad feet to help it tromp over sand dunes. So how on earth would one of these guys end up in the High Arctic?
Well, scientists have known for a long time, turns out, even before Natalia’s discovery, that camels are actually originally American. They started here. For nearly 40 of the 45 million years that camels have been around, you could only find them in North America, around 20 different species, maybe more.
(Audio) LN: If I put them all in a lineup, would they look different?
NR: Yeah, you’re going to have different body sizes. You’ll have some with really long necks, so they’re actually functionally like giraffes.
Some had snouts, like crocodiles.
(Audio) NR: The really primitive, early ones would have been really small, almost like rabbits.
What? Rabbit-sized camels?
(Audio) NR: The earliest ones. So those ones you probably would not recognize.
Oh my God, I want a pet rabbit-camel.
(Audio) NR: I know, wouldn’t that be great?
Within the science, we have a historical story block that continues below. Taking us back in time allows us to imagine the evolution that occurred. This could apply to many topics and gives the listener a frame of reference that extends beyond the current moment.
And then about three to seven million years ago, one branch of camels went down to South America, where they became llamas and alpacas, and another branch crossed over the Bering Land Bridge into Asia and Africa. And then around the end of the last ice age, North American camels went extinct.
So, scientists knew all of that already, but it still doesn’t fully explain how Natalia found one so far north. This is, temperature-wise, the polar opposite of the Sahara. Now to be fair, three and a half million years ago, it was on average 22 degrees Celsius warmer than it is now. So it would have been boreal forest, so more like the Yukon or Siberia today. But still, they would have six-month-long winters where the ponds would freeze over. You’d have blizzards. You’d have 24 hours a day of straight darkness. How is it that one of these Saharan superstars could ever have survived those arctic conditions?
We’re now on to mystery number two. It’s not uncommon for the solving of one question to raise a subsequent question. By stating that question implicitly, the narrative shift is clear.
Natalia and her colleagues think they have an answer. And it’s kind of brilliant. What if the very features that we imagine make the camel so well-suited to places like the Sahara, actually evolved to help it get through the winter? What if those broad feet were meant to tromp not over sand, but over snow, like a pair of snowshoes? What if that hump — which, huge news to me, does not contain water, it contains fat — was there to help the camel get through that six-month-long winter, when food was scarce?
And then, only later, long after it crossed over the land bridge did it retrofit those winter features for a hot desert environment? For instance, the hump may be helpful to camels in hotter climes because having all your fat in one place, like a fat backpack, means that you don’t have to have that insulation all over the rest of your body. So it helps heat dissipate easier. It’s this crazy idea, that what seems like proof of the camel’s quintessential desert nature could actually be proof of its High Arctic past.
Now, I’m not the first person to tell this story. Others have told it as a way to marvel at evolutionary biology or as a keyhole into the future of climate change. But I love it for a totally different reason. For me, it’s a story about us, about how we see the world and about how that changes. So I was trained as a historian. And I’ve learned that, actually, a lot of scientists are historians, too. They make sense of the past. They tell the history of our universe, of our planet, of life on this planet. And as a historian, you start with an idea in your mind of how the story goes.
While Latif does not go into any detail, just the mention that he was trained as a historian gives us a sense of who he is and why he’s interested in the topic to begin with. And he also makes the connection between history and story, which is something we naturally do has humans.
(Audio) NR: We make up stories and we stick with it, like the camel in the desert, right? That’s a great story! It’s totally adapted for that. Clearly, it always lived there.
But at any moment, you could uncover some tiny bit of evidence. You could learn some tiny thing that forces you to reframe everything you thought you knew. In this case, this one scientist finds this one shard of what she thought was wood, and because of that, science has a totally new and totally counterintuitive theory about why this absurd Dr. Seuss-looking creature looks the way it does. And for me, it completely upended the way I think of the camel. It went from being this ridiculously niche creature suited only to this one specific environment, to being this world traveler that just happens to be in the Sahara, and could end up virtually anywhere.
At this point we hear the true reason for Latif telling this story. In this case it’s about scientific discovery, but in the larger perspective, it’s about all of us. That our lives can be different based on the smallest bit of wisdom. It says that we don’t know where life will take us, but maybe, just maybe, it will take us on an amazing journey of discovery.
This is Azuri. Azuri, hi, how are you doing? OK, here, I’ve got one of these for you here.
So Azuri is on a break from her regular gig at the Radio City Music Hall.
That’s not even a joke. Anyway —
But really, Azuri is here as a living reminder that the story of our world is a dynamic one. It requires our willingness to readjust, to reimagine.
Right, Azuri?
And, really, that we’re all just one shard of bone away from seeing the world anew.
Bringing a camel on stage is not something that many of us could pull off, and it’s done for dramatic and humorous effect in Latif’s story, but he uses the visual of a live camel to bring home his message once again – that we can see the world anew.
Thank you very much.
Note Latif’s facial expressions, use of his hands and sound of his voice. All are expressive, which adds emphasis when he’s being serious, as well as when he’s being humorous. You can also see his head turn from side to side in order to address the entire audience. He doesn’t need to move about the stage, or even across the red circle. His connection to the audience is brilliant.
[Note: all comments inserted into this transcript are my opinions, not those of the speaker, the TED organization, nor anyone else on the planet. In my view, each story is unique, as is every interpretation of that story. The sole purpose of these analytical posts is to inspire a storyteller to become a storylistener, and in doing so, make their stories more impactful.]
◆
If you enjoyed this article…
◆
contact me to discuss your storytelling goals!
◆
Subscribe to our newsletter for the latest updates!
Copyright Storytelling with Impact® – All rights reserved
Paula Hammond: A new superweapon in the fight against cancer @ TED Talks Live
/in Genetics, Science, TED, TED Talk/by Mark LovettTED Talks Live were held at The Town Hall Theater in NYC, in November of 2015. I had the pleasure of attending all six nights to hear speakers present impactful Ideas Worth Spreading. This post is an analysis of a talk by Paula Hammond on how science is developing new techniques for battling the most aggressive and tricky forms of cancer.
Watch Paula’s TED Talk. Notice how she narrows the focus of her story to just a subset of cancers that are the most difficult to treat, then masterfully describes the problem, the solution, and the results of these new treatments.
Transcript
(my notes in red)
Cancer affects all of us — especially the ones that come back over and over again, the highly invasive and drug-resistant ones, the ones that defy medical treatment, even when we throw our best drugs at them. Engineering at the molecular level, working at the smallest of scales, can provide exciting new ways to fight the most aggressive forms of cancer.
Paula’s opening phrase, that ‘Cancer affects all of us’, is powerful in that it speaks to a disease we all know about, but I wish she had continued with something along the lines of, ‘While not everyone gets cancer, most everyone knows someone – friend, relative, co-worker – who has dealt with it.’ That would have been a much better way to expand on the narrative thread.
The balance of her opening establishes the context of her story as she speaks about the most challenging forms of cancer and a strategy of working at the molecular level to address them.
Cancer is a very clever disease. There are some forms of cancer, which, fortunately, we’ve learned how to address relatively well with known and established drugs and surgery. But there are some forms of cancer that don’t respond to these approaches, and the tumor survives or comes back, even after an onslaught of drugs.
Paula’s slide helps to illustrate the broad range of cancers, and the fact that while therapies have been developed to address some types, others do remain resistant to those therapies. She doesn’t need to list them off, the slide provides that information to the audience.
We can think of these very aggressive forms of cancer as kind of supervillains in a comic book. They’re clever, they’re adaptable, and they’re very good at staying alive. And, like most supervillains these days, their superpowers come from a genetic mutation. The genes that are modified inside these tumor cells can enable and encode for new and unimagined modes of survival, allowing the cancer cell to live through even our best chemotherapy treatments.
Using the term ‘supervillains’ is an appropriate analogy to describe how powerful and crafty these cancers are, and how difficult it is to defeat them. In this case, their craftiness comes from ‘a genetic mutation’, and to explain that term, Paula describes how the process works using language that the general public can better understand. This is something to keep in mind if your story contains terminology (on any topic) that your audience may not fully grasp when they hear it. Think about how you can explain what the term means in simpler words.
One example is a trick in which a gene allows a cell, even as the drug approaches the cell, to push the drug out, before the drug can have any effect. Imagine — the cell effectively spits out the drug. This is just one example of the many genetic tricks in the bag of our supervillain, cancer. All due to mutant genes.
While such mutations may manifest in many ways, Paula cites one example to illustrate her point. In a longer talk, 2 or 3 examples could be cited in order to paint a more detailed and diverse picture of the problem, but even this one example underscores the concept of cancer’s trickery. Identifying multiple story blocks will give you the option to expand or contract the length of your story.
So, we have a supervillain with incredible superpowers. And we need a new and powerful mode of attack. Actually, we can turn off a gene. The key is a set of molecules known as siRNA. siRNA are short sequences of genetic code that guide a cell to block a certain gene. Each siRNA molecule can turn off a specific gene inside the cell. For many years since its discovery, scientists have been very excited about how we can apply these gene blockers in medicine.
Once again, a technical term – siRNA – is simply explained and connected to the previous passage. A gene causes the problem, this approach blocks the gene. Easy to understand.
Paula then says, ‘For many years since its discovery…’, which is general in nature and keeps the focus of the sentence on the fact that scientists have been excited about the possibilities.
An alternative approach would have been to specify the year of discovery and/or name the scientists who made the discovery. That would add a sense of historical perspective and give credit to those who pioneered the technology. In the end it’s up to the speaker to determine how that statement will be worded. Something to consider when crafting your narrative.
But, there is a problem. siRNA works well inside the cell. But if it gets exposed to the enzymes that reside in our bloodstream or our tissues, it degrades within seconds. It has to be packaged, protected through its journey through the body on its way to the final target inside the cancer cell.
Some solutions are straightforward and easy to implement, but often times there’s a catch, a challenge that prevents the solution to work as intended. The use of words such as ‘exposed’, ‘degrades’, ‘packaged’, and ‘protected’ are common, nontechnical terms that clearly explain the problem and resolution.
So, here’s our strategy. First, we’ll dose the cancer cell with siRNA, the gene blocker, and silence those survival genes, and then we’ll whop it with a chemo drug. But how do we carry that out? Using molecular engineering, we can actually design a superweapon that can travel through the bloodstream. It has to be tiny enough to get through the bloodstream, it’s got to be small enough to penetrate the tumor tissue, and it’s got to be tiny enough to be taken up inside the cancer cell. To do this job well, it has to be about one one-hundredth the size of a human hair.
Paula’s use of ‘supervillain’, ‘superpower’, and ‘superweapon’, creates an alliteration of sorts (please correct me if you have a better grammar definition) that takes the listener from the ‘villain’ to ‘weapon’ via ‘power’.
Let’s take a closer look at how we can build this nanoparticle. First, let’s start with the nanoparticle core. It’s a tiny capsule that contains the chemotherapy drug. This is the poison that will actually end the tumor cell’s life. Around this core, we’ll wrap a very thin, nanometers-thin blanket of siRNA. This is our gene blocker. Because siRNA is strongly negatively charged, we can protect it with a nice, protective layer of positively charged polymer. The two oppositely charged molecules stick together through charge attraction, and that provides us with a protective layer that prevents the siRNA from degrading in the bloodstream. We’re almost done.
In the previous passage Paula explains what the solution has to do, and in this passage she talks about how that was actually done. Think about these three steps – this is what the problem looked like, this is what the solution needs to look like, and this is how that solution was created. This is a beautiful way to present a technical story to a nontechnical audience.
But there is one more big obstacle we have to think about. In fact, it may be the biggest obstacle of all. How do we deploy this superweapon? I mean, every good weapon needs to be targeted, we have to target this superweapon to the supervillain cells that reside in the tumor.
But our bodies have a natural immune-defense system: cells that reside in the bloodstream and pick out things that don’t belong, so that it can destroy or eliminate them. And guess what? Our nanoparticle is considered a foreign object. We have to sneak our nanoparticle past the tumor defense system. We have to get it past this mechanism of getting rid of the foreign object by disguising it.
So we add one more negatively charged layer around this nanoparticle, which serves two purposes. First, this outer layer is one of the naturally charged, highly hydrated polysaccharides that resides in our body. It creates a cloud of water molecules around the nanoparticle that gives us an invisibility cloaking effect. This invisibility cloak allows the nanoparticle to travel through the bloodstream long and far enough to reach the tumor, without getting eliminated by the body.
On one level we know this process is highly complex, but using ‘a cloud of water molecules’ to provide an ‘invisibility cloak’ is all we need. We understand the concept of using a disguise to avoid detection.
Second, this layer contains molecules which bind specifically to our tumor cell. Once bound, the cancer cell takes up the nanoparticle, and now we have our nanoparticle inside the cancer cell and ready to deploy. Alright! I feel the same way. Let’s go!
Paula is so clear in describing the problem and solution she’s dealing with that the audience gets excited and cheers. They can sense victory. This is no easy task, but if your story involves a problem / solution scenario, think about how you can build up a sense of anticipation and accomplishment within your narrative.
The siRNA is deployed first. It acts for hours, giving enough time to silence and block those survival genes. We have now disabled those genetic superpowers. What remains is a cancer cell with no special defenses. Then, the chemotherapy drug comes out of the core and destroys the tumor cell cleanly and efficiently. With sufficient gene blockers, we can address many different kinds of mutations, allowing the chance to sweep out tumors, without leaving behind any bad guys.
So, how does our strategy work? We’ve tested these nanostructure particles in animals using a highly aggressive form of triple-negative breast cancer. This triple-negative breast cancer exhibits the gene that spits out cancer drug as soon as it is delivered. Usually, doxorubicin — let’s call it “dox” — is the cancer drug that is the first line of treatment for breast cancer. So, we first treated our animals with a dox core, dox only. The tumor slowed their rate of growth, but they still grew rapidly, doubling in size over a period of two weeks.
Then, we tried our combination superweapon. A nanolayer particle with siRNA against the chemo pump, plus, we have the dox in the core. And look — we found that not only did the tumors stop growing, they actually decreased in size and were eliminated in some cases. The tumors were actually regressing.
Once a solution has been architected, it must be deployed, else it’s just a theory. In this passage, which is just over a minute, Paula provides a specific case where the solution was used. Note how she delivers the final sentence – ‘The tumors were actually regressing.’ – her pace slows as she clearly enunciates each word, one at a time. We feel the importance of her words and understand the impact that her solution had on the cancer.
What’s great about this approach is that it can be personalized. We can add many different layers of siRNA to address different mutations and tumor defense mechanisms. And we can put different drugs into the nanoparticle core. As doctors learn how to test patients and understand certain tumor genetic types, they can help us determine which patients can benefit from this strategy and which gene blockers we can use.
Ovarian cancer strikes a special chord with me. It is a very aggressive cancer, in part because it’s discovered at very late stages, when it’s highly advanced and there are a number of genetic mutations. After the first round of chemotherapy, this cancer comes back for 75 percent of patients. And it usually comes back in a drug-resistant form. High-grade ovarian cancer is one of the biggest supervillains out there. And we’re now directing our superweapon toward its defeat.
As a researcher, I usually don’t get to work with patients. But I recently met a mother who is an ovarian cancer survivor, Mimi, and her daughter, Paige. I was deeply inspired by the optimism and strength that both mother and daughter displayed and by their story of courage and support. At this event, we spoke about the different technologies directed at cancer. And Mimi was in tears as she explained how learning about these efforts gives her hope for future generations, including her own daughter. This really touched me. It’s not just about building really elegant science. It’s about changing people’s lives. It’s about understanding the power of engineering on the scale of molecules.
A key aspect of the Ideation phase is to identify why your story matters to those who will be listening, watching or reading. Paula does just that as she uses a story block about another person – in this instance two people, the mother and daughter – to bring home the message that ‘engineering on the scale of molecules’ has such far reaching effects, and may very well touch those in the audience.
I know that as students like Paige move forward in their careers, they’ll open new possibilities in addressing some of the big health problems in the world — including ovarian cancer, neurological disorders, infectious disease — just as chemical engineering has found a way to open doors for me, and has provided a way of engineering on the tiniest scale, that of molecules, to heal on the human scale.
In conclusion, Paula provides three examples – varian cancer, neurological disorders, and infectious disease – where this technology may deliver promising solutions. She brilliantly ends with a connection between ‘tiniest scale’ and ‘human scale’.
I encourage you to watch this talk a second time. Pay attention to how every word matters, and how she constructs the problem / solution storyline. Despite the complexity of her topic, we are never lost or confused. In similar fashion, your story should ideally take people on a journey without any bumps along the way.
Thank you.
[Note: all comments inserted into this transcript are my opinions, not those of the speaker, the TED organization, nor anyone else on the planet. In my view, each story is unique, as is every interpretation of that story. The sole purpose of these analytical posts is to inspire a storyteller to become a storylistener, and in doing so, make their stories more impactful.]
◆
If you enjoyed this article…
◆
contact me to discuss your storytelling goals!
◆
Subscribe to the newsletter for the latest updates!
Copyright Storytelling with Impact® – All rights reserved
James Green: 3 moons and a planet that could have alien life @ TED Talks Live
/in Science, Technology, TED, TED Talk/by Mark LovettTED Talks Live were held at The Town Hall Theater in NYC, in November of 2015. I had the pleasure of attending all six nights to hear speakers present impactful Ideas Worth Spreading. This post is an analysis of a talk by James Green about a planet and three moons within our solar system that may be home to lifeforms of some sort.
Watch James’ TED Talk. Most science talks are based on research performed in a laboratory. Hypotheses are codified, tests performed, and the results published. But once we leave the earth, the concept is a bit different. While any scientific discovery involves speculation, this factor becomes more prevalent off planet.
If your story involves science, and you’re thinking that science can’t be fun or it won’t seem exciting, this is a talk that will convince you otherwise. It’s a brilliant example of how technical information can be brought to life.
Transcript
(my notes in red)
Is there life beyond Earth in our solar system?
Asking a rhetorical question can serve as a powerful opening. As a reminder, rhetorical questions are asked in order to make a point and/or stimulate the thought process of a listener. It’s not meant to solicit an answer. In this case, James asks a question that’s been asked for thousands of years, and it’s one that most of us would love to have an answer to.
This question provides a physical frame of reference – not on earth, but still within our own solar system. Rhetorical questions can take us back in time, or into the future. Phrases such as ‘Imagine you are…’, or ‘What if…’ signals the audience that you want them to change their perspective away from the here and now. In doing so, it sparks their imagination.
Note: In general, I’m not a fan of speakers asking literal questions as a way to engage their audience. It makes sense in very specific situations but the majority of the time it’s a feeble attempt to connect with the audience, and indicates a weakness in the speaker’s story.
Wow, what a powerful question. You know, as a scientist — planetary scientist — we really didn’t take that very seriously until recently. Carl Sagan always said, “It takes extraordinary evidence for extraordinary claims.” And the claims of having life beyond Earth need to be definitive, they need to be loud and they need to be everywhere for us to be able to believe it.
James takes a moment to frame how he will answer the question in his talk – from a scientific point of view – one that is based on evidence.
So how do we make this journey? What we decided to do is first look for those ingredients for life. The ingredients of life are: liquid water — we have to have a solvent, can’t be ice, has to be liquid. We also have to have energy. We also have to have organic material — things that make us up, but also things that we need to consume. So we have to have these elements in environments for long periods of time for us to be able to be confident that life, in that moment when it starts, can spark and then grow and evolve.
James provides another aspect of the framing, so that there is clarity regarding the process. When your story is intended for a public audience, don’t assume they will know each of the parameters that you’re working within. In most situations you will need to be explicit. Otherwise, confusion will crop up later in your narrative.
Well, I have to tell you that early in my career, when we looked at those three elements, I didn’t believe that they were beyond Earth in any length of time and for any real quantity. Why? We look at the inner planets. Venus is way too hot — it’s got no water. Mars — dry and arid. It’s got no water. And beyond Mars, the water in the solar system is all frozen.
In this brief historical story block, James looks back to describe what scientists previously thought about the question at hand. This is a common technique, used to contrast how things were in the past versus how things are today.
But recent observations have changed all that. It’s now turning our attention to the right places for us to take a deeper look and really start to answer our life question. So when we look out into the solar system, where are the possibilities? We’re concentrating our attention on four locations. The planet Mars and then three moons of the outer planets: Titan, Europa and small Enceladus.
The use of this visual image is impactful as the planet and moons he’s referring to become more that just his words. We can see the relative sizes and differences in color. We are not given any details, yet our imaginations continue to engage.
So what about Mars? Let’s go through the evidence. Well, Mars we thought was initially moon-like: full of craters, arid and a dead world. And so about 15 years ago, we started a series of missions to go to Mars and see if water existed on Mars in its past that changed its geology. We ought to be able to notice that. And indeed we started to be surprised right away. Our higher resolution images show deltas and river valleys and gulleys that were there in the past.
And in fact, Curiosity — which has been roving on the surface now for about three years — has really shown us that it’s sitting in an ancient river bed, where water flowed rapidly. And not for a little while, perhaps hundreds of millions of years. And if everything was there, including organics, perhaps life had started. Curiosity has also drilled in that red soil and brought up other material. And we were really excited when we saw that. Because it wasn’t red Mars, it was gray material, it’s gray Mars. We brought it into the rover, we tasted it, and guess what? We tasted organics — carbon, hydrogen, oxygen, nitrogen, phosphorus, sulfur — they were all there.
You can hear the excitement in his voice, the sense of surprise at what the rover had found. As you listen to your rehearsal recordings, always pay attention to whether the emotion on the page is reflected in your voice. Happy, sad, angry and perplexed have unique tones.
So Mars in its past, with a lot of water, perhaps plenty of time, could have had life, could have had that spark, could have grown. And is that life still there? We don’t know that. But a few years ago we started to look at a number of craters. During the summer, dark lines would appear down the sides of these craters. The more we looked, the more craters we saw, the more of these features. We now know more than a dozen of them.
A few months ago the fairy tale came true. We announced to the world that we know what these streaks are. It’s liquid water. These craters are weeping during the summer. Liquid water is flowing down these craters. So what are we going to do now — now that we see the water? Well, it tells us that Mars has all the ingredients necessary for life. In its past it had perhaps two-thirds of its northern hemisphere — there was an ocean. It has weeping water right now. Liquid water on its surface. It has organics. It has all the right conditions. So what are we going to do next? We’re going to launch a series of missions to begin that search for life on Mars. And now it’s more appealing than ever before.
Science becomes real when it’s described in language that the average person understands. We understand the search for water, the discovery of a river bed, a robotic rover identifying elements, and craters weeping water. Without being there we can visualize what James is describing.
He doesn’t just say, ‘we went to Mars and discovered water and chemicals’, he takes the time – in this instance around 3 minutes – to paint a vivid picture with words, but he also includes images that say so much more. Think about how you can use a combination of sentences and images to give your audience a richer experience.
05:23
As we move out into the solar system, here’s the tiny moon Enceladus. This is not in what we call the traditional habitable zone, this area around the sun. This is much further out. This object should be ice over a silicate core.
But what did we find? Cassini was there since 2006, and after a couple years looked back after it flew by Enceladus and surprised us all. Enceladus is blasting sheets of water out into the solar system and sloshing back down onto the moon. What a fabulous environment. Cassini just a few months ago also flew through the plume, and it measured silicate particles. Where does the silica come from? It must come from the ocean floor. The tidal energy is generated by Saturn, pulling and squeezing this moon — is melting that ice, creating an ocean. But it’s also doing that to the core.
Now, the only thing that we can think of that does that here on Earth as an analogy … are hydrothermal vents. Hydrothermal vents deep in our ocean were discovered in 1977. Oceanographers were completely surprised. And now there are thousands of these below the ocean.
What do we find? The oceanographers, when they go and look at these hydrothermal vents, they’re teeming with life, regardless of whether the water is acidic or alkaline — doesn’t matter. So hydrothermal vents are a fabulous abode for life here on Earth. So what about Enceladus? Well, we believe because it has water and has had it for a significant period of time, and we believe it has hydrothermal vents, with perhaps the right organic material, it is a place where life could exist. And not just microbial — maybe more complex because it’s had time to evolve.
In this story about the moon Enceladus, James uses an analogy to compare something we’re unsure of, to something here on Earth that we do have knowledge of. This is a big ‘what if’ as the answer to what’s happening on Enceladus isn’t known so he uses the phrase ‘we believe’. When you’re presenting scientific information, it’s important to differentiate between what is ‘believed’ versus ‘what has been proven’. The phrase ‘it now seems’ is rather different from saying ‘we now know’.
Another moon, very similar, is Europa. Galileo visited Jupiter’s system in 1996 and made fabulous observations of Europa. Europa, we also know, has an under-the-ice crust ocean. Galileo mission told us that, but we never saw any plumes. But we didn’t look for them. Hubble, just a couple years ago, observing Europa, saw plumes of water spraying from the cracks in the southern hemisphere, just exactly like Enceladus.
These moons, which are not in what we call a traditional habitable zone, that are out in the solar system, have liquid water. And if there are organics there, there may be life. This is a fabulous set of discoveries because these moons have been in this environment like that for billions of years. Life started here on Earth, we believe, after about the first 500 million, and look where we are. These moons are fabulous moons.
Another moon that we’re looking at is Titan. Titan is a huge moon of Saturn. It perhaps is much larger than the planet Mercury. It has an extensive atmosphere. It’s so extensive — and it’s mostly nitrogen with a little methane and ethane — that you have to peer through it with radar. And on the surface, Cassini has found liquid. We see lakes … actually almost the size of our Black Sea in some places. And this area is not liquid water; it’s methane. If there’s any place in the solar system where life is not like us, where the substitute of water is another solvent — and it could be methane — it could be Titan.
Early on James states that one of the requirements for life is a liquid solvent, which I assumed would be water. But in describing Titan he speaks about another solvent – methane – that could also work. That had me wondering how life could exist in a liquid solvent other than water. I would have appreciated the addition of one minute to this talk for an explanation.
But my desire serves to highlight the potential problem of a story’s length. If James was only given ten minutes for this talk, that extra minute wasn’t in the cards, unless the story was cut elsewhere, and I couldn’t find any aspect of this story that could be cut and not lose meaning. You may very well come up against a similar constraint and have to chose what to include or cut. Stories don’t go on forever.
Well, is there life beyond Earth in the solar system? We don’t know yet, but we’re hot on the pursuit. The data that we’re receiving is really exciting and telling us — forcing us to think about this in new and exciting ways. I believe we’re on the right track. That in the next 10 years, we will answer that question. And if we answer it, and it’s positive, then life is everywhere in the solar system. Just think about that. We may not be alone.
James concludes where he started by admitting that we don’t know if life exists beyond the boundaries of earth, but he offers his personal view that we’ll have an answer in the next decade. And his final words, ‘We may not be alone.’ are a perfect mirror to the words that he opened with, ‘Is there life beyond Earth in our solar system?’
Thank you.
[Note: all comments inserted into this transcript are my opinions, not those of the speaker, the TED organization, nor anyone else on the planet. In my view, each story is unique, as is every interpretation of that story. The sole purpose of these analytical posts is to inspire a storyteller to become a storylistener, and in doing so, make their stories more impactful.]
◆
If you enjoyed this article…
◆
contact me to discuss your storytelling goals!
◆
Subscribe to our newsletter for the latest updates!
Copyright Storytelling with Impact® – All rights reserved
Zaria Forman: Drawings that show the beauty and fragility of Earth @ TED Talks Live
/in Art, Climate Change, Nature, TED, TED Talk/by Mark LovettTED Talks Live were held at The Town Hall Theater in NYC, in November of 2015. I had the pleasure of attending all six nights to hear speakers present impactful Ideas Worth Spreading. This post is an analysis of a talk by Zaria Forman, about the effects of climate change on the planet.
She does this, not by way of scientific research, but by way of her art. Art that is drawn from personal experiences around the world. Art that documents what’s happening to our planet. Art that can inspire others to act.
Watch Zaria’s TED Talk. I found it to be surprising short, considering the amount of information it contains. But a great deal of that information comes from the images and video that Zaria includes. It’s as though those images are speaking alongside her.
Transcript
(my notes in red)
I consider it my life’s mission to convey the urgency of climate change through my work. I’ve traveled north to the Arctic to the capture the unfolding story of polar melt, and south to the Equator to document the subsequent rising seas. Most recently, I visited the icy coast of Greenland and the low-lying islands of the Maldives, connecting two seemingly disparate but equally endangered parts of our planet.
Consider how engaging Zaria’s opening sentence is, with ‘life’s mission’, ‘urgency’, ‘climate change’, and ‘my work’. She says it in a matter-of-fact way, yet her passion is obvious, and the topic is one that concerns everyone in the audience. She could have followed this opening with a direct statement about her work, such as, “I’m an artist…”, but the image behind her tells that story. Images often reinforce what you’re saying, but they can also be a substitute for words. Think about how images can add to the story you’re telling.
Zaria uses a contrast between Greenland and the Maldives, along with the phrase ‘equally endangered’ to illustrate the global nature of climate change. She also says ‘icy coast’ and ‘low-lying islands’ to amplify the contrast beyond location, allowing the audience to better visualize those places. Are there such contrasts within your story that can help explain differences or diversity in regards to the topic that you’re exploring?
My drawings explore moments of transition, turbulence and tranquility in the landscape, allowing viewers to emotionally connect with a place you might never have the chance to visit. I choose to convey the beauty as opposed to the devastation. If you can experience the sublimity of these landscapes, perhaps you’ll be inspired to protect and preserve them.
The expression ‘out of sight, out of mind’ applies to many important subjects. If we don’t see it, or experience it, these subjects can fade from our memory. Great stories take people into places or experiences, and art can do the same, which Zaria brings to our attention. The point is to have the audience feel, think and experience as though they were there with you.
Behavioral psychology tells us that we take action and make decisions based on our emotions above all else. And studies have shown that art impacts our emotions more effectively than a scary news report. Experts predict ice-free Arctic summers as early as 2020. And sea levels are likely to rise between two and ten feet by century’s end. I have dedicated my career to illuminating these projections with an accessible medium, one that moves us in a way that statistics may not.
Using a statistic story block can be a powerful way to highlight an aspect of your story, but visuals are an alternative. With climate change, a picture taken after a hurricane, flood or drought can convey more emotion than the numbers behind the cause of climate change. While Zaria’s medium is visual, in this case she has chosen to focus on beauty rather than destruction. Either approach is an option. In some situations, you can use two images that tell very different stories. One positive, one negative. Or a before and after comparison.
As to the science Zaria references – ‘behavioral psychology’, ‘studies have shown’, ‘experts predict’ – there is always the question of whether sources should be sighted. Zaria has not done any of this research herself so we’re supposed to accept it as common knowledge. I usually lean toward sighting the source of scientific information, but you will find plenty of talks that don’t. It’s another judgement call for every storyteller.
My process begins with traveling to the places at the forefront of climate change. On-site, I take thousands of photographs. Back in the studio, I work from both my memory of the experience and the photographs to create very large-scale compositions, sometimes over 10 feet wide. I draw with soft pastel, which is dry like charcoal, but colors. I consider my work drawings but others call them painting. I cringe, though, when I’m referred to as a “finger painter.” But I don’t use any tools and I have always used my fingers and palms to manipulate the pigment on the paper.
Drawing is a form of meditation for me. It quiets my mind. I don’t perceive what I’m drawing as ice or water. Instead, the image is stripped down to its most basic form of color and shape. Once the piece is complete, I can finally experience the composition as a whole, as an iceberg floating through glassy water, or a wave cresting with foam. On average, a piece this size takes me about, as you can see, 10 seconds. Really, more like 200 hours, 250 hours for something that size.
The use of video and time lapse photography dramatically increases the impact of Zaria’s narrative. There’s simply no way that words alone could explain her process to the audience. We see the scope of her work, as well as the attention to detail and the use of her fingers.
She also takes the opportunity to turn the time lapse sequence into a moment of humor. Some speakers are reluctant to insert humor into a serious subject, but it can provide a break in the narrative that engages the audience in a positive way. Zaria resets the tone with a real number before shifting from her work to her backstory. Humor will often happen abruptly, which adds to the fun as the audience is not expecting it, but you also need to consider how you will exit from a humorous moment.
But I’ve been drawing ever since I could hold a crayon, really. My mom was an artist, and growing up, we always had art supplies all over the house. My mother’s love of photography propelled her to the most remote regions of the earth, and my family and I were fortunate enough to join and support her on these adventures. We rode camels in Northern Africa and mushed on dog sleds near the North Pole.
Hearing about the roots of a speaker’s passion for their subject is a powerful connection tool that humanizes the narrative. We get a glimpse into Zaria’s childhood, from the ‘art supplies all over the house’ to her ‘mother’s love of photography’ and the references to riding camels and having mushed on dog sleds. We come away with a better sense of who she is and why she’s so passionate about addressing climate change. Does your narrative help explain you?
In August of 2012, I led my first expedition, taking a group of artists and scholars up the northwest coast of Greenland. My mother was originally supposed to lead this trip. She and I were in the early stages of planning, as we had intended to go together, when she fell victim to a brain tumor. The cancer quickly took over her body and mind, and she passed away six months later. During the months of her illness, though, her dedication to the expedition never wavered, and I made a promise to carry out her final journey.
My mother’s passion for the Arctic echoed through my experience in Greenland, and I felt the power and the fragility of the landscape. The sheer size of the icebergs is humbling. The ice fields are alive with movement and sound in a way that I never expected. I expanded the scale of my compositions to give you that same sense of awe that I experienced. Yet, while the grandeur of the ice is evident, so, too, is its vulnerability. From our boat, I could see the ice sweating under the unseasonably warm sun.
This section could have been told without referencing her mother’s illness, instead focusing on just the expedition, but it would have lost a vital element of both drive and appreciation for what Zaria experienced. Sometimes storytellers leave out such personal components in their story, which is fine for a first draft, but when you go back through the narrative, always ask yourself what you were thinking, or what was important, what was motivating you. Often times you will uncover a thread that adds richness to your story.
We had a chance to visit many of the Inuit communities in Greenland that now face huge challenges. The locals spoke to me of vast areas of sea ice that are no longer freezing over as they once did. And without ice, their hunting and harvesting grounds are severely diminished, threatening their way of life and survival.
This short story block tells the story of someone else, in this case the Inuit communities of Greenland. It helps answer the question, “Why does this matter”, which is something you need to ask yourself throughout the Ideation and Narration phases of writing your story.
The melting glaciers in Greenland are one of the largest contributing factors to rising sea levels, which have already begun to drown some of our world’s lowest-lying islands. One year after my trip to Greenland, I visited the Maldives, the lowest and flattest country in the entire world. While I was there, I collected images and inspiration for a new body of work: drawings of waves lapping on the coast of a nation that could be entirely underwater within this century.
Devastating events happen every day on scales both global and personal. When I was in Greenland, I scattered my mother’s ashes amidst the melting ice. Now she remains a part of the landscape she loved so much, even as it, too, passes and takes on new form.
Among the many gifts my mother gave me was the ability to focus on the positive, rather than the negative. My drawings celebrate the beauty of what we all stand to lose. I hope they can serve as records of sublime landscapes in flux, documenting the transition and inspiring our global community to take action for the future.
Thank you.
Zaria continues the thread of her mother’s influence on her work; to remain positive and celebrate nature’s beauty. Her call-to-action is wrapped within her final message of hoping her work can inspire others to take action. Part of the ‘why does it matter question’ is to ask ‘what do we have to lose’, which is a common element in a topic with implications for society.
Compare Zaria’s talk to one that I recently reviewed by Juan Enriquez about reprogramming life. His talk was focused on the topic, from both a historical, present day, and futuristic standpoint, and lacked the personal history and resulting passion that Zaria included. I will usually suggest that storytellers include some backstory as it helps the audience to connect with them, but not everyone is comfortable with that, or feels that it’s necessary.
One way to become a better storyteller is by hearing / watching / reading a variety of stories and thinking about which narrative styles / formats impacted you the most. Your stories will benefit from the process.
[Note: all comments inserted into this transcript are my opinions, not those of the speaker, the TED organization, nor anyone else on the planet. In my view, each story is unique, as is every interpretation of that story. The sole purpose of these analytical posts is to inspire a storyteller to become a storylistener, and in doing so, make their stories more impactful.]
◆
If you enjoyed this article…
◆
contact me to discuss your storytelling goals!
◆
Subscribe to our newsletter for the latest updates!
Copyright Storytelling with Impact® – All rights reserved
Sal Khan: Let’s teach for mastery, not test scores @ TED Talks Live
/in Education, Science, Technology, TED, TED Talk/by Mark LovettTED Talks Live were held at The Town Hall Theater in NYC, in November of 2015. I had the pleasure of attending all six nights to hear speakers present impactful Ideas Worth Spreading. This post is an analysis of a talk by Sal Khan about how mastery and mindset can improve learning.
It’s a classic problem/solution story. One that describes a process that is being used on a global scale – in this case the process of learning – but often delivers less than ideal results. In such situations the stakes are high and new ways of thinking are required in order to address rapid changes in society.
Watch Sal’s TED Talk. He demonstrates that the status quo is not serving most students as it should, and offers an alternative that is based on his experience running the Khan Academy. In his view, it’s imperative that we change the way we learn. And if we do, the benefits to society are significant.
Transcript
(my notes in red)
I’m here today to talk about the two ideas that, at least based on my observations at Khan Academy, are kind of the core, or the key leverage points for learning. And it’s the idea of mastery and the idea of mindset.
When a speaker is well known, as is the case with Sal Khan who founded Khan Academy, a phrase such as ‘my observations at Khan Academy’ speaks volumes. He doesn’t need to explain his role or the history of the academy, but if you don’t have such notoriety, adding another sentence of explanation will keep the audience from being confused about who you are and the work you’re doing. In fact, at no point in his talk does Sal speak about his credentials. Few of us would be so fortunate.
I saw this in the early days working with my cousins. A lot of them were having trouble with math at first, because they had all of these gaps accumulated in their learning. And because of that, at some point they got to an algebra class and they might have been a little bit shaky on some of the pre-algebra, and because of that, they thought they didn’t have the math gene. Or they’d get to a calculus class, and they’d be a little bit shaky on the algebra. I saw it in the early days when I was uploading some of those videos on YouTube, and I realized that people who were not my cousins were watching.
Having introduced ‘the idea of mastery and the idea of mindset’, Sal provides an example that is also personal – ‘my cousins’ and by mentioning that it happened ‘in the early days’, he takes us back in time to the beginning of his journey. When you’re taking an audience on a journey of discovery, of developing a new view of the world, people want to know where it all started. What’s your origin story?
And at first, those comments were just simple thank yous. I thought that was a pretty big deal. I don’t know how much time you all spend on YouTube. Most of the comments are not “Thank you.” They’re a little edgier than that.
But then the comments got a little more intense, student after student saying that they had grown up not liking math. It was getting difficult as they got into more advanced math topics. By the time they got to algebra, they had so many gaps in their knowledge they couldn’t engage with it. They thought they didn’t have the math gene. But when they were a bit older, they took a little agency and decided to engage. They found resources like Khan Academy and they were able to fill in those gaps and master those concepts, and that reinforced their mindset that it wasn’t fixed; that they actually were capable of learning mathematics.
He then shifts the narrative from his cousins to the general public who have been watching his math videos on YouTube. In doing so Sal offers evidence that people who struggled with math could master the concepts that had been troublesome. In your idea-driven story, can you offer examples of how your idea is having an impact? That signifies that your idea has been, to some extent, validated.
And in a lot of ways, this is how you would master a lot of things in life. It’s the way you would learn a martial art. In a martial art, you would practice the white belt skills as long as necessary, and only when you’ve mastered it you would move on to become a yellow belt. It’s the way you learn a musical instrument: you practice the basic piece over and over again, and only when you’ve mastered it, you go on to the more advanced one.
Sal uses the examples of martial arts and music to support the idea of mastery that he began with. In this way we understand that the principle at hand is not confined to his one subject, but instead is common in many aspects of life. Most social problems have parallels elsewhere in society.
But what we point out — this is not the way a traditional academic model is structured, the type of academic model that most of us grew up in. In a traditional academic model, we group students together, usually by age, and around middle school, by age and perceived ability, and we shepherd them all together at the same pace. And what typically happens, let’s say we’re in a middle school pre-algebra class, and the current unit is on exponents, the teacher will give a lecture on exponents, then we’ll go home, do some homework. The next morning, we’ll review the homework, then another lecture, homework, lecture, homework. That will continue for about two or three weeks, and then we get a test. On that test, maybe I get a 75 percent, maybe you get a 90 percent, maybe you get a 95 percent. And even though the test identified gaps in our knowledge, I didn’t know 25 percent of the material. Even the A student, what was the five percent they didn’t know?
Even though we’ve identified the gaps, the whole class will then move on to the next subject, probably a more advanced subject that’s going to build on those gaps. It might be logarithms or negative exponents. And that process continues, and you immediately start to realize how strange this is. I didn’t know 25 percent of the more foundational thing, and now I’m being pushed to the more advanced thing. And this will continue for months, years, all the way until at some point, I might be in an algebra class or trigonometry class and I hit a wall. And it’s not because algebra is fundamentally difficult or because the student isn’t bright. It’s because I’m seeing an equation and they’re dealing with exponents and that 30 percent that I didn’t know is showing up. And then I start to disengage.
In this story block, Sal describes how a traditional education system works and identifies a fundamental flaw in the learning process – the fact that students are expected to learn new concepts using a foundation that contains knowledge gaps. This description not only resonates with the highly educated audience at the event, but will also be familiar with students around the world. In doing so, he builds a connection to the local, as well as the remote, audience.
To appreciate how absurd that is, imagine if we did other things in our life that way. Say, home-building. So we bring in the contractor and say, “We were told we have two weeks to build a foundation. Do what you can.” So they do what they can. Maybe it rains. Maybe some of the supplies don’t show up. And two weeks later, the inspector comes, looks around, says, “OK, the concrete is still wet right over there, that part’s not quite up to code … I’ll give it an 80 percent.” You say, “Great! That’s a C. Let’s build the first floor.”
Same thing. We have two weeks, do what you can, inspector shows up, it’s a 75 percent. Great, that’s a D-plus. Second floor, third floor, and all of a sudden, while you’re building the third floor, the whole structure collapses. And if your reaction is the reaction you typically have in education, or that a lot of folks have, you might say, maybe we had a bad contractor, or maybe we needed better inspection or more frequent inspection. But what was really broken was the process. We were artificially constraining how long we had to something, pretty much ensuring a variable outcome, and we took the trouble of inspecting and identifying those gaps, but then we built right on top of it.
As he did previously, Sal uses an analogy – this time building a house – to illustrate the result of creating a flawed foundation. Analogies can be an impactful part of your narrative, as they provide your audience with another way of seeing the problem that you’re addressing. When Sal says ‘Let’s build the first floor.’ what goes through your mind is, ‘This is not going to end well.’ Which is the point he’s making about the education system. You would never consider building a house with a flawed foundation.
So the idea of mastery learning is to do the exact opposite. Instead of artificially constraining, fixing when and how long you work on something, pretty much ensuring that variable outcome, the A, B, C, D, F — do it the other way around. What’s variable is when and how long a student actually has to work on something, and what’s fixed is that they actually master the material.
Every story that is concerned with a problem, must naturally shift to the solution, which in this story is ‘… to do the exact opposite.’ The change is from focusing on the time constraint to focusing on ‘mastery learning’. Where this pivot occurs is different in every story. In this talk, it’s about the half way point, which is pretty common. What’s important is that the pivot is clear the audience.
And it’s important to realize that not only will this make the student learn their exponents better, but it’ll reinforce the right mindset muscles. It makes them realize that if you got 20 percent wrong on something, it doesn’t mean that you have a C branded in your DNA somehow. It means that you should just keep working on it. You should have grit; you should have perseverance; you should take agency over your learning.
As he continues with the benefits of his approach to learning, Sal touches upon the second idea that he mentioned at the beginning of his talk – mindset. Rather than feeling that a low score is the final word, he encourages students to take control of their situation, to have grit, perseverance and agency. Solutions to problems that require individual action should include the inspiration to take those actions.
Now, a lot of skeptics might say, well, hey, this is all great, philosophically, this whole idea of mastery-based learning and its connection to mindset, students taking agency over their learning. It makes a lot of sense, but it seems impractical. To actually do it, every student would be on their own track. It would have to be personalized, you’d have to have private tutors and worksheets for every student. And these aren’t new ideas — there were experiments in Winnetka, Illinois, 100 years ago, where they did mastery-based learning and saw great results, but they said it wouldn’t scale because it was logistically difficult. The teacher had to give different worksheets to every student, give on-demand assessments.
If there are audience members who doubt the veracity of your idea, including an opposite viewpoint story block allows the speaker to address concerns that might be present. In this case he includes the example of a previous experiment, the challenges they encountered, then follows on with his view that such issues are no longer a problem today. The general approach is ‘you may see the situation this way, but I have a different view that I want to share with you’.
But now today, it’s no longer impractical. We have the tools to do it. Students see an explanation at their own time and pace? There’s on-demand video for that. They need practice? They need feedback? There’s adaptive exercises readily available for students.
In a longer talk there would be time to provide examples of how ‘on-demand video’ and ‘adaptive exercises’ would work for students. I was left with a concept, but not much in the way of understanding. Hearing one story about an individual would have made the idea much more impactful.
And when that happens, all sorts of neat things happen. One, the students can actually master the concepts, but they’re also building their growth mindset, they’re building grit, perseverance, they’re taking agency over their learning. And all sorts of beautiful things can start to happen in the actual classroom. Instead of it being focused on the lecture, students can interact with each other. They can get deeper mastery over the material. They can go into simulations, Socratic dialogue.
Sal reiterates some of the key point previously mentioned in his talk – mastering the concepts, building a growth mindset, building grit and perseverance and taking agency. This is a way to remind the audience of those factors which are important to your solution. Once again, however, I wanted to hear a story. An example of how a more dynamic classroom would operate. Take me inside the room. Let me feel the experience.
To appreciate what we’re talking about and the tragedy of lost potential here, I’d like to give a little bit of a thought experiment. If we were to go 400 years into the past to Western Europe, which even then, was one of the more literate parts of the planet, you would see that about 15 percent of the population knew how to read. And I suspect that if you asked someone who did know how to read, say a member of the clergy, “What percentage of the population do you think is even capable of reading?” They might say, “Well, with a great education system, maybe 20 or 30 percent.”
But if you fast forward to today, we know that that prediction would have been wildly pessimistic, that pretty close to 100 percent of the population is capable of reading. But if I were to ask you a similar question: “What percentage of the population do you think is capable of truly mastering calculus, or understanding organic chemistry, or being able to contribute to cancer research?” A lot of you might say, “Well, with a great education system, maybe 20, 30 percent.”
But what if that estimate is just based on your own experience in a non-mastery framework, your own experience with yourself or observing your peers, where you’re being pushed at this set pace through classes, accumulating all these gaps? Even when you got the A, that 95 percent, what was that five percent you missed? And it keeps accumulating — you get to an advanced class, all of a sudden you hit a wall and say, “I’m not meant to be a cancer researcher; I’m not meant to be a physicist; I’m not meant to be a mathematician.”
And I suspect that that actually is the case, but if you were allowed to be operating in a mastery framework, if you were allowed to really take agency over your learning, and when you get something wrong, embrace it — view that failure as a moment of learning — that number, the percent that could really master calculus or understand organic chemistry, is actually a lot closer to 100 percent.
The use of a ‘what if’ type of hypothetical question allows the audience to envision what could be better if the process was improved. In a problem/solution, idea-driven storyline, that’s a way of asking, ‘What if my solution were implemented? What would the result be?’ There are no guarantees that a proposed solution will work, but if you explain it clearly and give examples, the audience can imagine what the future might look like.
And this isn’t even just a “nice to have.” I think it’s a social imperative. We’re exiting what you could call the industrial age and we’re going into this, whatever, information revolution. And it’s clear that some things are happening. In the industrial age, society was a pyramid. And at the base of the pyramid, you needed human labor. In the middle of the pyramid, you had an information processing, a bureaucracy class, and at the top of the pyramid, you had your owners of capital and your entrepreneurs and your creative class. But we know what’s happening already, as we go into this information revolution. The bottom of that pyramid, automation, is going to take over. Even that middle tier, information processing, that’s what computers are good at.
Sal brings up an important point, that society is changing rapidly due to a revolution in information processing, which in his mind, means that it’s imperative to adopt a new way of learning. This is common for social issues that are not static. Which is to say, your solution is not just about solving a current problem, but is also needed going forward to prevent even greater harm. Think about how the future will look without your ideas being implemented. Is there a similar imperative within your story that the audience needs to understand?
So as a society, we have a question: All this new productivity is happening because of this technology, but who participates in it? Is it just going to be that very top of the pyramid, in which case, what does everyone else do? How do they operate? Or do we do something that’s more aspirational? Do we actually attempt to invert the pyramid, where you have a large creative class, where almost everyone can participate as an entrepreneur, an artist, as a researcher?
And I don’t think that this is utopian. I really think that this is all based on the idea that if we let people tap into their potential by mastering concepts, by being able to exercise agency over their learning, that they can get there. And when you think of it as just a citizen of the world, it’s pretty exciting. I mean, think about the type of equity we can we have, and the rate at which civilization could even progress. And so, I’m pretty optimistic about it. I think it’s going to be a pretty exciting time to be alive.
Thank you.
The visual of ‘inverting the pyramid’ is powerful, it’s a classic, ‘turn the problem on its head’ sort of narrative, but I’m not sure it works here. It may make sense to you, but it had me scratching my head. I was thinking that Sal’s approach to learning, whereby students learn at their own pace, master each level before moving on, and take control of their future, feels more like ‘leveling the playing field’.
But that’s a relatively small complaint, as the crux of his talk is about how our education system is fundamentally flawed, but doesn’t need to be. That we can change how the system operates, and in doing so, give students the opportunity to thrive instead of struggle.
[Note: all comments inserted into this transcript are my opinions, not those of the speaker, the TED organization, nor anyone else on the planet. In my view, each story is unique, as is every interpretation of that story. The sole purpose of these analytical posts is to inspire a storyteller to become a storylistener, and in doing so, make their stories more impactful.]
◆
If you enjoyed this article…
◆
contact me to discuss your storytelling goals!
◆
Subscribe to our newsletter for the latest updates!
Copyright Storytelling with Impact® – All rights reserved